3.2063 \(\int \frac {2+3 x}{\sqrt {1-2 x} (3+5 x)^3} \, dx\)

Optimal. Leaf size=68 \[ -\frac {69 \sqrt {1-2 x}}{1210 (5 x+3)}-\frac {\sqrt {1-2 x}}{110 (5 x+3)^2}-\frac {69 \tanh ^{-1}\left (\sqrt {\frac {5}{11}} \sqrt {1-2 x}\right )}{605 \sqrt {55}} \]

[Out]

-69/33275*arctanh(1/11*55^(1/2)*(1-2*x)^(1/2))*55^(1/2)-1/110*(1-2*x)^(1/2)/(3+5*x)^2-69/1210*(1-2*x)^(1/2)/(3
+5*x)

________________________________________________________________________________________

Rubi [A]  time = 0.01, antiderivative size = 68, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.182, Rules used = {78, 51, 63, 206} \[ -\frac {69 \sqrt {1-2 x}}{1210 (5 x+3)}-\frac {\sqrt {1-2 x}}{110 (5 x+3)^2}-\frac {69 \tanh ^{-1}\left (\sqrt {\frac {5}{11}} \sqrt {1-2 x}\right )}{605 \sqrt {55}} \]

Antiderivative was successfully verified.

[In]

Int[(2 + 3*x)/(Sqrt[1 - 2*x]*(3 + 5*x)^3),x]

[Out]

-Sqrt[1 - 2*x]/(110*(3 + 5*x)^2) - (69*Sqrt[1 - 2*x])/(1210*(3 + 5*x)) - (69*ArcTanh[Sqrt[5/11]*Sqrt[1 - 2*x]]
)/(605*Sqrt[55])

Rule 51

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^(n + 1
))/((b*c - a*d)*(m + 1)), x] - Dist[(d*(m + n + 2))/((b*c - a*d)*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^n,
x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && LtQ[m, -1] &&  !(LtQ[n, -1] && (EqQ[a, 0] || (NeQ[
c, 0] && LtQ[m - n, 0] && IntegerQ[n]))) && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 78

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> -Simp[((b*e - a*f
)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/(f*(p + 1)*(c*f - d*e)), x] - Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1)
+ c*f*(p + 1)))/(f*(p + 1)*(c*f - d*e)), Int[(c + d*x)^n*(e + f*x)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, f,
 n}, x] && LtQ[p, -1] && ( !LtQ[n, -1] || IntegerQ[p] ||  !(IntegerQ[n] ||  !(EqQ[e, 0] ||  !(EqQ[c, 0] || LtQ
[p, n]))))

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin {align*} \int \frac {2+3 x}{\sqrt {1-2 x} (3+5 x)^3} \, dx &=-\frac {\sqrt {1-2 x}}{110 (3+5 x)^2}+\frac {69}{110} \int \frac {1}{\sqrt {1-2 x} (3+5 x)^2} \, dx\\ &=-\frac {\sqrt {1-2 x}}{110 (3+5 x)^2}-\frac {69 \sqrt {1-2 x}}{1210 (3+5 x)}+\frac {69 \int \frac {1}{\sqrt {1-2 x} (3+5 x)} \, dx}{1210}\\ &=-\frac {\sqrt {1-2 x}}{110 (3+5 x)^2}-\frac {69 \sqrt {1-2 x}}{1210 (3+5 x)}-\frac {69 \operatorname {Subst}\left (\int \frac {1}{\frac {11}{2}-\frac {5 x^2}{2}} \, dx,x,\sqrt {1-2 x}\right )}{1210}\\ &=-\frac {\sqrt {1-2 x}}{110 (3+5 x)^2}-\frac {69 \sqrt {1-2 x}}{1210 (3+5 x)}-\frac {69 \tanh ^{-1}\left (\sqrt {\frac {5}{11}} \sqrt {1-2 x}\right )}{605 \sqrt {55}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.06, size = 62, normalized size = 0.91 \[ \frac {\sqrt {1-2 x} \left (-\frac {55 (345 x+218)}{(5 x+3)^2}-\frac {138 \sqrt {55} \tan ^{-1}\left (\sqrt {\frac {5}{11}} \sqrt {2 x-1}\right )}{\sqrt {2 x-1}}\right )}{66550} \]

Antiderivative was successfully verified.

[In]

Integrate[(2 + 3*x)/(Sqrt[1 - 2*x]*(3 + 5*x)^3),x]

[Out]

(Sqrt[1 - 2*x]*((-55*(218 + 345*x))/(3 + 5*x)^2 - (138*Sqrt[55]*ArcTan[Sqrt[5/11]*Sqrt[-1 + 2*x]])/Sqrt[-1 + 2
*x]))/66550

________________________________________________________________________________________

fricas [A]  time = 0.89, size = 69, normalized size = 1.01 \[ \frac {69 \, \sqrt {55} {\left (25 \, x^{2} + 30 \, x + 9\right )} \log \left (\frac {5 \, x + \sqrt {55} \sqrt {-2 \, x + 1} - 8}{5 \, x + 3}\right ) - 55 \, {\left (345 \, x + 218\right )} \sqrt {-2 \, x + 1}}{66550 \, {\left (25 \, x^{2} + 30 \, x + 9\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2+3*x)/(3+5*x)^3/(1-2*x)^(1/2),x, algorithm="fricas")

[Out]

1/66550*(69*sqrt(55)*(25*x^2 + 30*x + 9)*log((5*x + sqrt(55)*sqrt(-2*x + 1) - 8)/(5*x + 3)) - 55*(345*x + 218)
*sqrt(-2*x + 1))/(25*x^2 + 30*x + 9)

________________________________________________________________________________________

giac [A]  time = 1.16, size = 68, normalized size = 1.00 \[ \frac {69}{66550} \, \sqrt {55} \log \left (\frac {{\left | -2 \, \sqrt {55} + 10 \, \sqrt {-2 \, x + 1} \right |}}{2 \, {\left (\sqrt {55} + 5 \, \sqrt {-2 \, x + 1}\right )}}\right ) + \frac {345 \, {\left (-2 \, x + 1\right )}^{\frac {3}{2}} - 781 \, \sqrt {-2 \, x + 1}}{2420 \, {\left (5 \, x + 3\right )}^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2+3*x)/(3+5*x)^3/(1-2*x)^(1/2),x, algorithm="giac")

[Out]

69/66550*sqrt(55)*log(1/2*abs(-2*sqrt(55) + 10*sqrt(-2*x + 1))/(sqrt(55) + 5*sqrt(-2*x + 1))) + 1/2420*(345*(-
2*x + 1)^(3/2) - 781*sqrt(-2*x + 1))/(5*x + 3)^2

________________________________________________________________________________________

maple [A]  time = 0.01, size = 48, normalized size = 0.71 \[ -\frac {69 \sqrt {55}\, \arctanh \left (\frac {\sqrt {55}\, \sqrt {-2 x +1}}{11}\right )}{33275}-\frac {100 \left (-\frac {69 \left (-2 x +1\right )^{\frac {3}{2}}}{12100}+\frac {71 \sqrt {-2 x +1}}{5500}\right )}{\left (-10 x -6\right )^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((3*x+2)/(5*x+3)^3/(-2*x+1)^(1/2),x)

[Out]

-100*(-69/12100*(-2*x+1)^(3/2)+71/5500*(-2*x+1)^(1/2))/(-10*x-6)^2-69/33275*arctanh(1/11*55^(1/2)*(-2*x+1)^(1/
2))*55^(1/2)

________________________________________________________________________________________

maxima [A]  time = 1.17, size = 74, normalized size = 1.09 \[ \frac {69}{66550} \, \sqrt {55} \log \left (-\frac {\sqrt {55} - 5 \, \sqrt {-2 \, x + 1}}{\sqrt {55} + 5 \, \sqrt {-2 \, x + 1}}\right ) + \frac {345 \, {\left (-2 \, x + 1\right )}^{\frac {3}{2}} - 781 \, \sqrt {-2 \, x + 1}}{605 \, {\left (25 \, {\left (2 \, x - 1\right )}^{2} + 220 \, x + 11\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2+3*x)/(3+5*x)^3/(1-2*x)^(1/2),x, algorithm="maxima")

[Out]

69/66550*sqrt(55)*log(-(sqrt(55) - 5*sqrt(-2*x + 1))/(sqrt(55) + 5*sqrt(-2*x + 1))) + 1/605*(345*(-2*x + 1)^(3
/2) - 781*sqrt(-2*x + 1))/(25*(2*x - 1)^2 + 220*x + 11)

________________________________________________________________________________________

mupad [B]  time = 0.06, size = 54, normalized size = 0.79 \[ -\frac {69\,\sqrt {55}\,\mathrm {atanh}\left (\frac {\sqrt {55}\,\sqrt {1-2\,x}}{11}\right )}{33275}-\frac {\frac {71\,\sqrt {1-2\,x}}{1375}-\frac {69\,{\left (1-2\,x\right )}^{3/2}}{3025}}{\frac {44\,x}{5}+{\left (2\,x-1\right )}^2+\frac {11}{25}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((3*x + 2)/((1 - 2*x)^(1/2)*(5*x + 3)^3),x)

[Out]

- (69*55^(1/2)*atanh((55^(1/2)*(1 - 2*x)^(1/2))/11))/33275 - ((71*(1 - 2*x)^(1/2))/1375 - (69*(1 - 2*x)^(3/2))
/3025)/((44*x)/5 + (2*x - 1)^2 + 11/25)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2+3*x)/(3+5*x)**3/(1-2*x)**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________